Monitoring of Dissolved Copper in California Coastal Waterbodies

Aniela Burant, Ph.D. Senior Environmental Scientist Surface Water Protection Program California Department of Pesticide Regulation

FILILIA

Outline

- Background on dissolved copper (DCu)
- Previous CDPR efforts
- Copper Antifouling Paint (Cu-AFP) Regulation
- CDPR Monitoring Study
 - Methods
 - Results
- Modeling
 - Spatial and Temporal Trends
- Limitations and Future Work

Copper and Water Quality

- Copper (Cu²⁺) is toxic to both target and non-target organisms
 - Only as labile or bioavailable copper
- Species of concern are mussels (blue and Mediterranean)
- California Toxics Rule (CTR) is an enforceable water quality standard
- Dissolved Copper:
 - Acute water quality criterion: $4.8 \ \mu g/L$
 - Chronic water quality criterion: 3.1 µg/L

Marinas and Water Quality

- Recreational marinas susceptible to Cu pollution
 - High concentration of boats
 - Long periods of time in marinas
 - Poorly flushed
- 303(d) listing of impaired waters
- CDPR Monitoring Study

Previous CDPR Efforts

• DCu and associated toxicity exceeding water quality standards in many California marinas

• Toxicant Identification Evaluation Tests showed DCu was the likely cause of toxicity

- - = Acute Water Quality Criterion, 4.8 μ g/L

---- =Chronic Water Quality Criterion, 3.1 μ g/L

LRS = Local Reference Site; OUT of the marina

Previous CDPR Efforts

- AB 425: CDPR needs to determine a leach rate cap and make mitigation recommendations
- Marine Antifoulant Model to Predict Environmental Concentrations (MAM-PEC)
- CTR chronic criterion of $3.1 \,\mu g/L$ dissolved copper is the goal
- What leach rate will be sufficient to achieve that concentration or lower in California marinas?

Copper AFP Regulation

3 CCR § 6190: No copper-based antifouling paint/coating shall be registered over a leach rate of 9.5 μ g/cm²/day

- Any currently registered paint above that leach rate was cancelled.
- For recreational boats only

Nanaimoboatyard.ca

• July 2018

Study Objectives

- Determine the concentrations of DCu in selected, representative waterbodies
- Determine the temporal and spatial trends in DCu across and within waterbodies
- Determine the potential toxicity of samples based on measured water chemistry parameters using the saltwater biotic ligand model.

Waterbody Selection

- Region
 - Site Specific Objectives in San Francisco Bay
 - Higher water temperatures in Southern California
- Size
 - Coyote Point Marina < 1000 vessels
 - Berkeley, Santa Barbara, and Redondo Beach < 2000 vessels
 - Channel Islands, <u>Newport Bay*</u>, <u>Marina</u> <u>del Rey*</u>, and <u>Shelter Island Yacht Basin*</u> > 2000 vessels
- Cooperation of marina owner/operator

Sampling Site Selection

- Number of samples dependent on size of waterbody
- Standardized sampling process
- In-line filtering
- Local reference sites
- Secondary constituent data

Results and Discussion

Results and Discussion

- **100%** detection frequency in the waterbodies
- Waterbody concentrations were 30% (Berkeley Marina) to **2030%** (Redondo Beach Marinas) higher than LRS sites
- CTR chronic criterion exceedance = **79%**
- CTR acute criterion exceedance = <u>52%</u>

Modeling – LASSO Regression

- LASSO Regression was used to determine a best fit model for predicting DCu concentrations
- Included 18 explanatory variables
- What variables contribute to DCu concentrations?

Results of Modeling

- Best fit modeling resulted 7 explanatory variables included in the model
 - Regional spatial trends
 - Trends between the waterbodies
 - Spatial trends
 - Trends within the waterbodies
 - Waterbody characteristic trends
- RMSE = 0.587, $R_{adj}^2 = 0.919$

• Latitude

Regional Spatial Trends

• Latitude

• Yearly Average Temperature

• Temperature at Sampling

Waterbody Characteristic Trends • Water Depth

• Surface Area

Newport Bay is ~3.3x larger than next largest waterbody (Marina del Rey)

Biotic Ligand Modeling

- Four sites: Coyote Point Marina, Berkeley Marina, Newport Bay, and Marina del Rey
- Measured DOC at every site
- Took T (°C), pH, and salinity *in-situ* measurements
- Inputs into a model to predict toxicity
 - Water chemistry controls speciation of copper

BLM Results

- EC₅₀ for *Mytilus galloprovincialis* (Mediterranean mussel)
- Four samples at Marina del Rey had toxic units ≥ 1.0
 - $EC_{50} = 7.12 8.52 \,\mu g/L$
 - DCu concentrations = 7.32 8.62μg/L
- SCCWRP: Ambient toxicity rarely observed
- Need for additional samples at other waterbodies

Reference Point Concentrations

- Results presented here are considered a reference point to evaluate long-term trends
- Cu-AFPs are on vessels for years
- Boatyard capacity is limited

Limitations

Future Work

Scrub A Dub Div

CF7564UB 10

Hull cleaning

• No distinction between spikes in passive leaching due to hull cleaning

Future Work

- Vertical concentration gradients
 - Spatial trends
 - DCu concentration are heterogeneous in the water column
- Tidal influence
 - Temporal trends
 - Tidal flushing affects DCu concentrations

Acknowledgments

- Mark Bettis of Coyote Point Marina (San Mateo County Parks)
- Stephen Bogner from Berkeley Marina
- John Kappeler from City of Newport
- Kelly Tait and Karen Holman from the Port of San Diego
- Jennifer Mongolo from Los Angeles Beaches and Harbor
- Gary Laolagi from City of Redondo Beach
- Mark Sandoval and Gary Hirtensteiner of Channel Islands Harbor (Ventura County)
- Karl Treiberg of Santa Barbara Harbor
- Scott Giatbaipoon of Department of Toxic Substances Environmental Chemistry Laboratory
- Xuyang Zhang, KayLynn Newhart, Emily Edgerton, Sarah Albright, Jesse Ybarra, Jennifer Teerlink, and Nan Singhasemanon of California Department of Pesticide Regulation

Contact: Aniela Burant Aniela.Burant@cdpr.ca.gov

The det

Channel Islands Harbor Median = 3.49 µg/L

