Global Climate Change and the Ocean

James Barry - Monterey Bay Aguarium Research Institute
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Global Climate Change and the Ocean

Road Map for Talk

A short climate change introduction
e Carbon dioxide on Earth — the long and short of it

Global warming and the oceans
« Sealevelrise
o Effects of climate warming on ocean ecosystems

The high-CO2 ocean and ocean acidification

« How does increased ocean carbon affect ocean
ecosystems?

A glimpse of our research at MBARI on ocean
acidification

Summary
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* CO2 has declined over the past z0 150 100
150 million years Time (Ma)

* Up to ~6 x present atmospheric
level (PAL) in the past

« ~1 C change in surface T per
PAL
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CO2 (ppm)

What is the link between CO2 and Climate?
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Millennial Northern Hemisphere CO, & Temperature

1.0
— Instrumental data (AD 1902-1999)
pnstruction (AD 1000-1980)
e instrumental value

@  Siple Station (Nettel et al. 1985)
€ Law Dome (Etheridge et al. 1996)
Mauna Loa (Keeling and Whorf 1996)
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History of CO, Emissions & Atmospheric CO, Levels
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Variations of the Earth’'s surface temperature: year 1000 to year 2100
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Warming by ~2090
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Sea Level Rise and Coastal Flooding

Global average sea level rise (1990 - 2100)

Sea level rise (metres) for the six SRES Scenarios
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Sea Level Rise and Coastal Flooding

Sea Level Rise
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Days condudve to ozone formation
(% increase relative to 1961-1990)

par year

Extreme heat days

Societal Impacts: Effects on California

Increased Risk of
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Global Warming & Ocean
Ecosystems

Warming
1900 to 2075

HADLEY CENTRE
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Mass coral bleaching caused by thermal stress

95% correlation with increases in sea
temperature (1-2°C above long-term
summer sea temperature maxima) and
bleaching.

Backed up experimentally

Basis for a highly predictive SST program at
NOAA (HotSpots):
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Strong, Hayes, Goreau, Causey and others
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WHAT DOES THE
FUTURE HOLD?




Climate-related shifts in rocky intertidal animals (1932-1

Warming of water temperatures over 60 years has been accompanied by a shift in the geographic ranges of species
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Warming prediction: Species ranges should migrate poleward with warming temperatures

Southern Species Increased Northern Species Declined

Barry et al. 1995



Long-term Ocean Warming
and effects on Zooplankton Biomass
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Changes in Fish Communities in the Channel Islands, California

Conclusions:
Northern Species decreased
Southern Species increased

Are observed
changes a
response to short-
term climate
variation or long-
term climate
warming?
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Scale of Oceanographic Variability

How will these different processes interact to affect
living components of marine ecosystems ?

El Nino
3-12 years
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Effects of Ocean Warming on Productivity

Tropics and mid-latitudes (nutrient-limited)

SST changes (°C)
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Warming increases stratification of the upper
ocean, leading to reduced mixing.

In low latitudes, this reduces growth of
phytoplankton, which are the base of the food
chain

Behrenfeld et al. 2006



Will global warming affect coastal upwelling ecosystems?

Spring and summer NW winds (alongshore) move water offshore rather than alongshore
Deeper, cooler, nutrient-rich waters ‘up-well’ to the surface

Phytoplankton communities flourish in these high nutrient waters: = high primary production
The food web (zooplankton to whales) benefits from upwelling
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El Nino and Ocean Productivity

El Nino

* Low upwelling

« Warm, unmixed waters

* Low ocean productivity

» Low zooplankton biomass and growth

La Nina

* More wind, greater upwelling

» Cool, mixed, nutrient-rich waters

e Low ocean productivity

» Low zooplankton biomass and growth

El Nifio

March 1998

Francisoo
9804
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Zooplankton Biomass
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http://www.afsc.noaa.gov/NMML/CaliforniaCurrent/El_Nino/femalecsl.htm

Pacific Decadal Variation in Ocean “Climate”

TOPEX Global Mode 1

Eastern Pacific Warm Plv\ef

Regime shift

1980 1990 2000

Chavez et al. 2004




Potential Changes in Sockeye Salmon Distribution from a Doubling of CO2

Sockeye Salmon spend ~2-3 y in the NE Pacific and Bering Sea

* Migrate northward in summer, southward in winter

» Food availability greatest in summer, but decreases with warmer temperature
» Metabolic costs increase exponentially with temperature.

* Net intake drops to <0 (beginning starvation) at warmer temperatures

Socke bution

Winter

165 E ~ 145 W

Starvation

Temperature

Welch et al. 1998




Potential Changes in Sockeye Salmon Distribution from a Doubling of CO2

Warming of ocean waters will:

* |Increase metabolic costs

» Decrease food levels

» Shift optimal feeding areas northward

* Increase starvation rates, thereby reducing both individual size and catch

* These effects cascade through the entire food chain (i.e. birds & mammals)

Socke bution

Winter

165 E ~ 145 W

Starvation

Temperature

165 ° 145 W

Welch et al. 1998



The High CO, Ocean




Global Carbon Pools & Fluxes

Global Primary
Production
& Resplratlon

Vegetation
& Soils
2,190

Available
Fossil Fuels
4,000

Atmosphere
775 Fossil Fuels

6

Shallow Ocean = 1,030

Deep Ocean
38,100

Surface Sediments = 150

Values in billions of metric tonnes (Gt Cly)



Latitude

Ocean CO, “Disposal” Today

Anthropogeni
CO,

Sabine et al. (2004)

Fossil fuel signal has penetrated to
>1000 - 2000m.

» The inventory was 48 Pg C in 1994.

 We have disposed of 118 PgC in the
world ocean.

» Global surface ocean CO, disposal is
now about 20-25 million tons
per day (61 kg/km?)



Range of Reference Case Fossil Fuel Carbon Emissions
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Ocean Carbonate Chemistry

CO, Air—-Sea Exchange

‘l‘ ‘/ Carbonic Acid Bicarbonate

Carbonate

—uco =

Future Decrease in Ocean pH Addition of CO,
e Increases acidity

e Decreases carbonate ions
e Decreases carbonate saturation
Emissions e Decreases calcification

Concentration (mh)

Caldeira and Wickett (2005) Year




Physiological Stresses Associated with High CO,

Air — Sea Exchange

Physiological Challenges CIOZ

Respiratory Stress Carbonic Acid Bicarbonate Carbonate

Reduced pH limits oxygen-binding and
transport by respiratory proteins, leading to

reduced aerobic capacity.

Acidosis (reduced internal pH)

Disruption of acid/base balance impairs
function and requires energy to restore or
maintain optimal internal pH levels.

Depression in carbonate saturation state f
: e .
increases the difficulty of carbonate

deposition, with unknown metabolic

consequences

Reduced Calcification . -\_
3‘

Metabolic Depression (Torpor)

Elevated CO,, reduced pH, or both can cause
some animals to enter a state of reduced
metabolic rate and semi-hibernation



Are CO,-related stresses severe for deep-sea

Deep-Sea Animals animails ¢ .
pH Variation
1. Reduced metabolic rates Among Ocean Basins
2. Reduced enzyme function 22 o
3. Evolved in highly stable deep-sea

environment
Food-limited —
“Living on the edge”

1000 r

Humboldt Sauid 2000 |

3000 r

Depth (m)

4000 [

5000
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Expected Reduction in Coral Reef
Calcification due to Reduced Ocean pH
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Kleypas et al 1999




Reduced Calcification
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Pteropod Mollusc

Riebesell et al 2000

Ocean acidification will effect calcification

for may species
Clams, Snails, Sea Stars, Urchins, Crabs, Shrimp,
Others

The consequences of reduced calcification are not known.




Ocean acidification may affect early life stages more than adults

Impaired development of sea urchin larvae in high CO2 sea water

Kurihara et al. 2004




Deep-sea Corals — Vulnerable to CO2?
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BARI small scale CO, experiments

RV Western Flyer
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Collecting Megafauna
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Controlled-gas Aquarium System for lab-based
studies of CO2 tolerance

Gas Control System
Oxygen, CO2
Regulation Verage

‘ [ ——

Nitrogen
‘B generator

« Control of temperature, oxygen, carbon dioxide

e Use:
» Studies of chronic hypercapnia on marine animals
« Growth rates, respiration, physiology




Summary of Expected Effects of Ocean Warming

Ocean Warming

Increased stratification of surface waters, reduced primary

productivity, cascading effects throughout the food chain.

 Reduced catch for important fishery species
 Reduced abundance of marine mammals and birds These phenomena are
known best for short-term events (e.g. El Nino)

Changes in species distributions, perhaps a disconnect between
feeding and breeding grounds

Warming-related mortality for coral reefs is expected to be severe
Ocean communities will change with ongoing climate warming,

perhaps drastically, but the nature of future ocean ecosystems
remains unclear



Summary of Expected Effects of Ocean Warming

Ocean acidification
 Metabolic Stress (respiratory stress, acidosis, reduced
calcification)
« Marine calcifiers (from phytoplankton to corals) will be
Impaired, with as yet unknown conseguences.
 Plankton communities will likely change
 Water-breathing animals will have higher costs for coping
with CO2-related stress, resulting in lower growth, survival
and reproduction
e Unclear effects on food webs, but may include a loss of
biodiversity, simplified food webs
 Deep-sea organisms are the most sensitive to CO2-related
stress (respiratory stress, acidosis)

Mitigation of climate warming and ocean acidification is
essential
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