Entrainment and Impingement Losses

- Definitions
- Estimation of Impingement
- Estimation of Entrainment
- Estimation of Ecological Effects due to Entrainment and Impingement

> Through Flow Design

General schematics for intake and discharge structures

Figure 1 - Schematic of SONGS submerged offshore intake and velocity cap

General schematic for intake and discharge of cooling water (e.g. Diablo, Potrero)

1. Onshore intake and outfall

- Minimizes construction and maintenance costs
- Minimizes impingement
- Entrainment of nearshore species
- Entrainment of drifting

Discharge of warm water
Power Plant

Intake of cool water organisms that "pile up" on shore

General schematic for intake and discharge of cooling water (e.g. Moss Landing)
2. Onshore intake and offshore outfall

- Minimizes impingement
- Allows for diffusion of warm water (makes it easier to meet NPDES conditions)

Intake of cool water

- Entrainment of nearshore species

General schematic for intake and discharge of cooling water (e.g. San Onofre)
3. Offshore intake and outfall

- Increases impingement
- Allows for diffusion of warm water (makes it easier to meet NPDES conditions)
- Entrainment of more offshore species

Intake of cool water

Thermal Effects, Impingement and Entrainment

Example Case: Estimation of impacts due to use of cooling water at Huntington Beach Generating Station (HBGS)

- Impingement
- Entrainment

Huntington Beach Generating Station

Figure 2-2. Schematic of the AES HBGS cooling water intake system.

Relevant comparisons

Characteristic	Huntington Beach (Units 3,4)	Diablo Canyon	New Moss Landing (Units 1 \& 2)
Water Withdrawal	176,000 gallons per minute	$\sim 1,750,000$ gallons per minute	250,000 gallons per minute
Intake Velocity	$1.9-3.7$ feet per second	0.5 feet per second	0.5 feet per second
Screen opening diameter	$3 / 8^{\text {th }}$ inch	$3 / 8^{\text {th }}$ inch	$5 / 16^{\text {th }}$ inch
Power capacity	225 MW per unit	2200 MW (plant)	530 MW per unit

Entrainment and Impingement Losses

- Definitions
- Estimation of Impingement
- Estimation of Entrainment
- Estimation of Ecological Effects due to Entrainment and Impingement

Huntington Beach

Impingement (2003-2004)

Figure 2-2. Schematic of the AES HBGS cooling water intake system.

Impingement at SONGS

Figure 2 - Top view of SONGS on shore cooling water intake structure and fish return system

Total and average Impingement at SONGS

Entrainment and Impingement Losses

- Definitions
- Estimation of Impingement
- Estimation of Entrainment
- Estimation of Ecological Effects due to Entrainment and Impingement

Estimation of larval losses due to entrainment

Huntington Beach: Percentage of Fish Taxa accounting for more than 1 percent of individuals entrained

Fish Taxon	Common Name	Percent of Individuals in Entrainment Samples
Gobiidae (CIQ Complex)	gobies	36.95
Engraulidae	anchovies	17.98
Roncador stearnsi	spotfin croaker	13.57
Genyonemus lineatus	white croaker	6.53
Seriphus politus	queenfish	4.55
Sciaenidae	unidentified croakers	3.63
Hysoblennius spp.	blennies	2.47
Xenistius californiensis	salema	2.28
Paralichthys californicus	California halibut	1.46
Atherinopsidae	silversides	1.44
Cheilotrema saturnum	black croaker	1.43
Hypsopsetta guttulata	diamond turbot	1.29
Paralabrax spp.	kelp/sand bass	0.71
Chromis punctipinnis	blacksmith	0
Sardinops sagax	Pacific sardine	0.06
Sphyraena argentea	California barracuda	0.21

Estimation of Ecological Effects due to Entrainment

Methods of Estimation

- Fecundity Hindcast (FH)
- Adult Equivalent Loss (AEL)
- Proportional Mortality (PM)

Importance of larval losses due to entrainment

Adult Equivalent Loss (AEL)

Loss of Adult fish

Fecundity Hindcast (FH)

Larvae

Adult Stock
(Females)

Question: How to estimate losses to adult populations?

Table 5-1. Summary of entrainment modeling estimates on target taxa based on the three modeling techniques ($F H, A E L$, and $E T M\left[P_{M}\right]$). The $F H$ model estimates an equivalent number of breeding adult females, therefore this estimate is multiplied by two for comparison with the AEL model that estimates an equivalent numbers of adults irrespective of sex. The comparison assumes a $50: 50$ ratio of males:females in the population. The shoreline distance (km) used in the alongshore extrapolation of P_{M} is presented in parentheses next to the estimate.

Taxon	Estimated Annual Entrainment	2.FH	AEL
CIQ goby complex	113,166,834	202,538	147,493
northern anchovy	54,349,017	53,490	304,125
spotfin croaker	69,701,589	NA	NA
queenfish	17,809,864	NA	NA
white croaker	17,625,263	NA	NA
black croaker	7,128,127	NA	NA
salema	11,696,960	NA	NA
blennies	7,165,513	6,466	NA
diamond turbot	5,443,118	NA	NA
California halibut	5,021,168	NA	NA
sand crab megalops	69,793	NA	NA
California spiny lobster	0	NA	NA
ridgeback rock shrimp	0	NA	NA
market squid	0	NA	NA
rock crab megalops	6,411,171	NA	NA

NA - Estimate not available due to either insufficient life history information or low abundance in entrainment samples.

Estimation of Ecological Effects due to Entrainment

Methods of Estimation

- Fecundity Hindcast (FH)
- Need estimate of average fecundity per female
- Sometimes extremely variable estimates
- Need estimate of mortality between reproduction and entrainment - unknown for most species
- Adult Equivalent Loss (AEL)
- Need estimate of mortality between entrainment and maturity for most species - unknown for most species
- Proportional Mortality (PM) based on ETM

How to interpret P_{m} (proportional mortality)

- What counts as significant?
- Are low P_{m} values indicative of insignificant mortality rates?
- To understand this idea - use an example

Understanding "Source Water Population" (SWP) and "Proportional Mortality" (P_{m})
The SWP is that spatial area that contains the larvae at risk of entrainment.

Source Water Population

Understanding "Source Water

 Population" (SWP) and "Proportional Mortality" (P_{m})P_{m} is the percentage of the larvae at risk that are entrained and killed (e.g. 2\%).

Source Water Population

Entrained

Source Water Sampling at Huntington Beach

Each species will have a different Source Water Population
 Example: Queenfish (50.9 miles along coast)

Based on:

- Period of vulnerability to entrainment
- Distance larvae could have come from during the period of vulnerability

Entrainment Study - ETM Model results

The ETM Model: Calculation Of Average Mortality due to entrainment

1. Determine target species
2. Determine period when larvae are at risk
3. Calculate rates of mortality $\left(P_{m}\right)$ for target species
4. Assume that target species represent other species that were not targets
5. These values represents the estimated rate of mortality for all species having a larval phase whose PM's were not directly determined

Huntington Beach Entrainment Study - ETM Model results based on: (1) "best estimate" and estimate including uncertainty.

Taxon	Estimated Annual Entrainment	Pm Alongshore Extrapolation (Mean)	Pm Alongshore Extrapolation $(+1$ SE)
spotfin croaker	$69,701,589$	0.30%	37%
Queenfish	$17,809,864$	0.60%	29%
white croaker	$17,625,263$	0.70%	24%
black croaker	$7,128,127$	0.10%	38%
Salema	$11,696,960$	NA** *	$7,165,513$
Blennies	$5,443,118$	0.80%	28%
diamond turbot	$5,021,168$	0.30%	28%
California halibut	$6,411,171$	1.10%	35%
rock crab		$\mathbf{0 . 5 6 \%}$	30.0%
AVERAGE			
AVERAGE (acres)			

Another Example: Entrainment and

 Impingement at Diablo Canyon Power Plant (DCPP)
Diablo Canyon

Table 2: Estimates of duration at risk, mortality rate and source water body for target species.

	Adult Habitat	Sample Period	Duration at Risk (Days)	Mortality rate (Pm)	Source water body, alongshore distance over which Pm can be calculated (km)
Taxa					
smoothhead sculpin	Rocky	97-98	34.94	10.83\%	124.10
		98-99	34.94	14.90\%	139.40
monkeyface prickleback	Rocky	97-98	25.40	12.58\%	117.30
		98-99	25.40	9.24\%	136.00
Clinid kelpfishes	Rocky	97-98	31.60	15.72\%	124.10
		98-99	31.60	18.97\%	105.40
blackeye goby	Rocky	97-98	5.19	8.52\%	40.80
		98-99	5.19	4.90\%	30.60
cabezon	Rocky	97-98	8.00	0.76\%	59.50
		98-99	8.00	1.16\%	42.50
snubnose sculpin	Rocky	97-98	13.98	7.50\%	73.10
		98-99	13.98	15.72\%	71.40
painted greenling	Rocky	97-98	24.10	5.18\%	105.40
		98-99	24.10	3.45\%	124.10
KGB rockfishes	Rocky	97-98	16.43	3.05\%	86.70
		98-99	16.43	3.25\%	113.90
blue rockfish	Rocky	97-98	12.86	0.27\%	69.70
		98-99	12.86	1.68\%	85.00
white croaker	Sandy	97-98	22.00	0.57\%	93.50
		98-99	22.00	3.47\%	66.30
sanddabs	Sandy	97-98	11.00	0.77\%	54.40
		98-99	11.00	0.63\%	59.50
California halibut	Sandy	97-98	22.14	0.31\%	103.70
		98-99	22.14	4.60\%	91.80

Interpretation of estimate of LOSS (FH, AEL and PM)

- With FH and AEL we can estimate adult loss
- With PM we can estimate proportional larval loss
- Question: what level of loss is environmentally important?
- What counts as important?
- Local
- Regional
- National

Area of Production Foregone a way to interpret loss

- Method allows for conversion of organismal loss to habitat
- Can work for any source of loss
- Impingement or entrainment

Understanding "Source Water Population" (SWP) and "Proportional Mortality" (P_{m})
You cannot interpret P_{m} without knowing the size of the SWP

	Scenario 1	Scenario 2
P_{m}	10%	1%
SWP		

Source Water Population

Understanding "Source Water

 Population" (SWP) and "Proportional Mortality" (P_{m})You cannot interpret P_{m} without knowing the size of the SWP

	Scenario 1	Scenario 2
P_{m}	10%	1%
SWP	1 acre	640 acres

Understanding "Source Water

 Population" (SWP) and "Proportional Mortality" (P_{m})You cannot interpret P_{m} without knowing the size of the SWP. The product of P_{m} and SWP is the Area of Production forgone (APF), which is the best way to understand the impact

	Scenario 1	Scenario 2
P_{m}	10%	1%
SWP	1 acre	640 acres
APF	0.1 acre	$\mathbf{6 . 4}$ acres

Example: Proportional mortality for Queenfish (average) $=0.60 \%$

1. Calculate area of Source water Population (SWP)
2. Then the habitat required to compensate for larval losses =

SWP x 0.006

SWP $=89,920$ acres (140.5 sq. miles)
$89,920 \times 0.006=539$ acres (0.84 sq. miles) of new bay habitat would be needed to produce larvae equivalent
 to losses

Example: Proportional mortality for Queenfish (+1 SE) = 29\%

1. Calculate area of Source water Population (SWP)
2. Then the habitat required to compensate for larval losses =

SWP x 0.29

SWB $=89,920$ acres (140.5 sq. miles)
$89,920 \times 0.29=26,077$ acres (40.74 sq. miles) of new bay habitat would be needed to produce larvae equivalent
 to losses

Entrainment Study - ETM Model results

Taxon	Estimated Annual Entrainment	Pm Alongshore Extrapolation (Mean)	Pm Alongshore Extrapolation (+ 1 SE)	Length of Source Water Population (Miles)	Area (mi ${ }^{2}$) of Production Foregone (Mean)	Area $\left(\mathrm{mi}^{2}\right)$ of Production Foregone (+1 SE)
spotfin croaker	69,701,589	0.30\%	37\%	10.1	0.085	10.3141
Queenfish	17,809,864	0.60\%	29\%	50.9	0.911	40.7404
white croaker	17,625,263	0.70\%	24\%	28.7	0.583	19.0109
black croaker	7,128,127	0.10\%	38\%	11.6	0.039	12.1661
Salema	11,696,960	NA**				
Blennies	7,165,513	0.80\%	28\%	7.7	0.170	5.9506
diamond turbot	5,443,118	0.60\%	28\%	10.1	0.170	7.8053
California halibut	5,021,168	0.30\%	21\%	18.5	0.131	10.7226
rock crab	6,411,171	1.10\%	35\%	15.9	0.486	15.3594
AVERAGE (sq. miles)					0.325	15.26
AVERAGE (acres)					208	9765
Based on units 34 (acres)					104	4882.5

Huntington Beach: What does this mean

- If 104 (4882.5) acres of new bay habitat were added to the system (in general area of source water body) then (for Units $3 \& 4$):
- Direct impacts to sampled fish and invertebrates would be mitigated for
- Direct impact to other entrained species would probably be mitigated for (assuming the Pm values were proxies for all species)
- Indirect impacts would also probably be mitigated for

Assuming that new bay habitat was a comparable mixture of habitats to that in source water body

Diablo Canyon Power Plant

Best Estimate of Larval Loss Resulting from Entrainment
7.65\% of larvae associated with Rocky Reef Organisms over a 92 km stretch of coast

Equal to

300-1000 acres of rocky reef

